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Abstract

We develop the Maxwell–Stefan formulation for diffusion of multicomponent mixtures in zeolites and show that the mixture transport
behaviour can be predicted on the basis of information of the pure component jump diffusivities at zero loading. The interaction between
the diffusing, sorbed, species is taken into account by introduction of an interchange coefficients–Dij. The interchange coefficients–Dij

encapsulate the correlations in the molecular jumps. A logarithmic-interpolation formula is suggested for estimating these interchange
coefficients from the information on the pure component jump diffusivities. To verify the developed Maxwell–Stefan formulation, we have
carried out kinetic Monte Carlo (KMC) simulations to calculate the transport diffusivities for a ternary mixture in silicalite. The KMC
simulations confirm that the ternary mixture diffusion can be predicted with good accuracy with the Maxwell–Stefan theory. © 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

In the design of zeolite-based adsorption or catalytic
processes, it is essential to have a proper description of
diffusion of mixtures within the zeolite crystals [1–3]. For
n-component diffusion, the fluxesNi are related to the gra-
dients of the fractional occupancies∇θi by the following
relation:

(N) = −ρ[Θsat][D](∇θ) (1)

where [D] is then-dimensional square matrix of Fick diffu-
sivities,ρ the zeolite-matrix density expressed as unit cells
per m3, [Θsat] a diagonal matrix with elementsΘi,sat, rep-
resenting the saturation loading of speciesi. The fractional
occupanciesθi are defined as

θi ≡ Θi

Θi,sat
, i = 1, 2, . . . , n (2)

whereΘi represents the loading of speciesi expressed in
molecules of sorbate per unit cell.

For estimation of the fluxesNi , we need to estimate the
n×n elements of [D]. The elements of [D] are influenced not
only by the species mobilities but also by the sorption ther-
modynamics [4]. For design purposes, it is important to have
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a mixture diffusion theory with the capability of predicting
the elements of [D] from pure component transport data.
Such mixture diffusion theories are almost invariably based
on the theory of irreversible thermodynamics (IT) [4–7]. In
the Onsager IT formulation, a linear relation is postulated
between the fluxes and the chemical potential gradients:

(N) = −ρ[Θsat][L]
1

RT
∇(µ) (3)

whereR is the gas constant,T the temperature,∇(µ) the
column matrix of chemical potential gradients,∇µi repre-
sent the correct driving forces for diffusion, [L] the square
matrix of Onsager coefficients having the units [m2/s]. The
Onsager matrix [L] is non-diagonal, in general, and the
cross-coefficients portray the coupling between species dif-
fusion. The Onsager reciprocal relations demand that the
matrix [L] be symmetric, i.e.

Lij = Lji, i = 1, 2, . . . , n (4)

The chemical potential gradients in Eq. (3) may be ex-
pressed in terms of the gradients of the occupancies by
introduction of the matrix of thermodynamic factors [Γ ]:

θi

RT
∇µi =

n∑
j=1

Γij∇θj , Γij ≡
(

Θj,sat

Θi,sat

)
Θi

pi

∂pi

∂Θj
,

i, j = 1, 2, . . . , n (5)
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Nomenclature

[B] square matrix of drag coefficients (m2/s)
D Fick, or transport, diffusivity of component

1 in zeolite (m2/s)
[D] matrix of Fick diffusivities (m2/s)
–Di Maxwell–Stefan diffusivity of speciesi

in zeolite (m2/s)
–Dij Maxwell–Stefan diffusivity describing

interchange betweeni andj (m2/s)
D∗ tracer or self-diffusivity (m2/s)
� displacement distance (m)
[L] matrix of Onsager coefficients (m2/s)
n number of diffusing species,

dimensionless
N number of sorbed particles in KMC

simulation, dimensionless
Ni molecular flux of speciesi

(molecules/m2 s)
pi jump probability for theith process,

dimensionless
P system pressure (Pa)
r particle displacement vector (m)
R gas constant (8.314 J mol−1 K−1)
T absolute temperature (K)

Greek letters
Γ thermodynamic correction factor,

dimensionless
[Γ ] matrix of thermodynamic factors,

dimensionless
θi fractional surface occupancy of

componenti
Θi molecular loading (molecules per unit

cell or per cage)
Θi,sat saturation loading (molecules per

unit cell or per cage)
µi molar chemical potential (J mol−1)
ν jump frequency (s−1)
ρ density of zeolite (number of unit cells/m3)

Subscripts
1, 2, 3 referring to species 1, 2 and 3
int intersections
sat referring to saturation conditions
str straight channel
zz zig-zag channel

Vector and matrix notation
( ) column vector
[ ] square matrix

Operators
∇ gradient or nabla

Knowledge of the sorption isotherm is sufficient to allow es-
timation of [Γ ] and∇(µ). If the n-component sorption can
be described by the multicomponent Langmuir isotherm,
the elements of [Γ ] are given by

Γij = δij + θi

1 − θ1 − θ2 − · · · − θn

,

i, j = 1, 2, . . . , n (6)

whereδij is the Kronecker delta.
Combining Eqs. (1), (5) and (6), we obtain

(N) = −ρ[�sat][L]




1

θ1
0 0

0
. . . 0

0 0
1

θn


 [Γ ](∇θ) (7)

Comparing Eqs. (1) and (7), we obtain the inter-relation:

[D] = [L]




1

θ1
0 0

0
. . . 0

0 0
1

θn


 [Γ ] (8)

The Fick matrix [D] can be estimated from knowledge of the
Onsager matrix [L]. Unfortunately, the IT theory provides
no fundamental guidelines for estimating [L] from data on
pure component transport coefficients.

The objectives of the present communication are the
following:

1. To develop a procedure for estimating [L] and [D] from
pure component transport data; for this purpose we resort
to the Maxwell–Stefan formulation.

2. To validate the Maxwell–Stefan theory for estimating [L]
and [D] by performing KMC simulations for ternary dif-
fusion in silicalite.

2. The Maxwell–Stefan theory of diffusion in zeolites

In the Maxwell–Stefan formulation, entirely consistent
with the theory of IT, the chemical potential gradients are
written as linear functions of the fluxes [4,7–9]:

−ρ
θi

RT
∇µi =

n∑
j=1,j 	=i

Θj Ni − ΘiNj

Θi,satΘj,sat–Dij
+ Ni

Θi,sat–Di

,

i = 1, 2, . . . , n (9)

We have to reckon in general with two types of Maxwell–
Stefan diffusivities:–Di and–Dij. The–Di are the diffusivities
that reflect interactions between speciesi and the zeolite
matrix; they are also referred to as jump or “corrected”
diffusivities in the literature [3,4]. Mechanistically, the
Maxwell–Stefan diffusivity–Di may be related to the dis-
placement of the adsorbed molecular species,�, and the jump
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Fig. 1. Diffusion unit cells for silicalite. The large dots indicate the
sorption sites, located at the intersections between the straight and zig-zag
channels.

frequency, or transition probability,ν, which in general can
be expected to be dependent on the total occupancy [10–13].

For the silicalite topology (see Fig. 1), Kärger [14] has
derived the following set of relations:

–D1(0) = 1

3
(–Dx(0) + –Dy(0) + –Dz(0)),

–Dx(0) = 1

4
νzza

2,

–Dy(0) = 1

4
νstrb

2, –Dz(0) = 1

4

νstrνzz

νzz + νzz
c2 (10)

whereνstr andνzz are the jump frequencies for the move-
ment along the straight (str) and zig-zag (zz) channels,
respectively, and the dimensionsa, b andc are as specified
in Fig. 1. For specific molecules, the zero loading diffusiv-
ity –Di(0) can be determined experimentally or by use of
transition state theory [2,15–19].

The jump frequencyν can be expected to decrease with
occupancy [10–13]. If we assume that a molecule can mi-
grate from one site to another only when the receiving site
is vacant, the chance that this will occur will be a function
of the fraction of unoccupied sites. A simple model for
Maxwell–Stefan diffusivity is

–Di = –Di(0)(1 − θ1 − θ2 − · · · − θn) (11)

Additionally, molecular repulsive forces come into play
when determining the jump frequency of molecules. Due
to molecular repulsions, the jump frequency increases be-
cause a molecule wishes to escape from the “unfavourable”
environment. Clearly, the molecular repulsions will in-
crease when the occupancy increases [20]. The overall
effect of repulsive interactions could be to ensure that the
Maxwell–Stefan diffusivity –Di is independent of occu-
pancy, in conformity with a lot of experimental data [1–3].

Fig. 2. Pictorial representation of the two types of diffusivities for binary
mixtures using the Maxwell–Stefan model.

Mixture diffusion introduces an additional complication
due to sorbate–sorbate interactions. This interaction is em-
bodied in the coefficients–Dij. We can consider this coeffi-
cient as representing the facility for counter-exchange, i.e. at
a sorption site, the sorbed speciesj is replaced by the species
i; see Fig. 2. The Onsager reciprocal relations require–Dij =
–Dji. The net effect of this counter-exchange is a slowing
down of a faster moving species due to interactions with a
species of lower mobility. Also, a species of lower mobility
is accelerated by interactions with another species of higher
mobility. As shown by Krishna and Paschek [20,21],–Dij

encapsulates the correlation effects associated with molecu-
lar jumps. The interchange coefficient–Dij can be estimated
by the logarithmic-interpolation formula that has been sug-
gested by Krishna and Wesselingh [4]:

–Dij = [–Di ]
θi/(θi+θj )[–Dj ]θj /(θi+θj ) (12)

It is convenient to define ann-dimensional square matrix
[B] with elements

Bii = 1
–Di

+
n∑

j=1,j 	=i

θj

–Dij
,

Bij = − θi

–Dij
, i, j = 1, 2, . . . , n (13)

With this definition of [B], Eq. (9) can be cast into
n-dimensional matrix form

(N) = −ρ[Θsat][B]−1[Γ ]∇(θ) (14)
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which gives the following expressions for the Onsager and
Fick matrices:

[L] = [B]−1




θ1 0 0

0
. . . 0

0 0 θn


 , [D] = [B]−1[Γ ]. (15)

For single component diffusion, Eq. (15) simplifies to

L1 = –D1θ1, D1 = –D1

1 − θ1
. (16)

For single component diffusion, Eq. (16) shows that
none of the three coefficients, Fick, Maxwell–Stefan and
Onsager, are influenced by correlation effects [20]. The sit-
uation changes when we consider mixtures of two or more
species. Eq. (15) shows that the interchange coefficients
–Dij, portraying correlated molecular jumps, will influence
all the elements of [L] and [D]. In another way, the main
elements of the Onsager matrixLii cannot be identified
with pure component coefficients, as has been erroneously
suggested in the literature by Sundaram and Yang [6].

In order to verify Eqs. (12), (13) and (15) for estimation
of [L] and [D], we perform KMC simulations for ternary
mixture diffusion in silicalite.

3. KMC simulation methodology

We perform KMC simulations for a three-component
mixture in which each component follows Langmuir
isotherm behaviour. We assume the lattice to be made up
of equal-sized sites which can be occupied by only one
molecule at a time and there are no further molecule–
molecule interactions such as repulsive forces. Particles can
move from one site to a neighbouring site via hops. For
silicalite, the jump frequencies along the straight and zig-zag
channels for component 2 are taken to correspond to that
for 2-methyl hexane (2MH) at 300 K,ν1,str = 1.4 × 105/s,
ν1,zz = 5 × 104/s, these values were calculated by Smit
et al. [15] using the transition state theory. The maximum
loading was taken to be 4 molecules per unit cell, where
the molecules are all located at the intersections. We have
published the details of the pure component 2MH simula-
tions earlier [22,23]; these simulations have established the
validity of Eq. (11) to describe the variation of the jump
diffusivity –Di with occupancy. The jump frequencies for
components 1 and 3 are taken to be, respectively, half and
twice, the corresponding values for component 2. Table 1

Table 1
Transition probabilities and zero-loading diffusivities for three component

Species,i Θ1,sat νzz (s−1) νstr (s−1) –Di (0) (m2/s)

1 4 2.5 × 104 7 × 104 3.43× 10−14

2 (=2MH) 4 5× 104 1.4 × 105 6.86× 10−14

3 4 1× 105 2.8 × 105 13.72× 10−14

summarises the jump frequencies and the zero-loading jump
diffusivities for all the three components.

We employ a standard KMC methodology to propagate
the system (details in Refs. [21–25]). A hop is made at every
KMC step and the system clock is updated with variable
time steps. For a given configuration of random walkers on
the lattice, a process list containing all the possibleM moves
to vacant intersection sites is created. Each possible movei
is associated with a transition probabilityνi . Now, the mean
elapsed timeτ is the inverse of the total rate coefficient

τ−1 = νtotal =
M∑

i=1

νi (17)

which is then determined as the sum over all processes con-
tained in the process list. The actual KMC time step�t for
a given configuration is randomly chosen from a Poisson
distribution

�t = − ln(u)

νtotal
(18)

where u ∈ [0, 1] is a uniform random deviate. The time
step�t is independent from the chosen hopping process.
To select the actual jump, we define process probabilities
according topi = ∑i

j=1νj /νtotal. Theith process is chosen,
whenpi−1 < ν < pi , whereν ∈ [0, 1] is another uniform
random deviate. After having performed a hop, the process
list is updated. In order to avoid wall effects, we employ
periodic boundary conditions. We have investigated the finite
size effect on the diffusivity and found systems of 5× 5 ×
5 unit cells to be sufficiently large and giving satisfactory
results [22]. In order to provide sufficiently accurate data
for the Onsager transport coefficientLij , a total of 108–109

simulation steps were required. These simulations extended
to several CPU days on a single IBM SP2 node.

For ternary mixtures, applying linear response theory, the
Onsager coefficientsLij can be determined using the dis-
placement formula

Lij = lim
�t→∞

Lij(�t)

= 1

6

1

Ns
lim

�t→∞
1

�t

〈
 Ni∑

l=1

(rl,i (t + �t) − rl,i (t))




×

 Nj∑

k=1

(rk,j (t + �t) − rk,j (t))




〉
(19)

where〈· · · 〉 denotes both ensemble and time averaging over
the entire system trajectory,Ni the number of particles be-
long to speciesi, ri(t) the position vector of componenti at
time t. In contrast to the formula forLij used by Sanborn and
Snurr [26] in their MD simulations, the normalising volume
is replaced byNs, the total number of discrete adsorption
sites in the simulation. Furthermore, Eq. (19) yields theLij

in units of m2/s. The Onsager coefficientsLij are subject to
strong correlation effects and therefore the obtained values
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of the transport coefficients vary strongly with the separa-
tion time between two configurations�t; a �t of 0.002 s
was employed on the basis of our previous experience [22].

4. KMC simulation results compared to the MS
model predictions

In the first series of KMC simulations with the ternary
mixture, we keep the mixture composition constant and
θ1 = θ2 = θ3 = 0.333 for each species and study the in-
fluence of varying the total occupancy(θ1 + θ2 + θ3). The
KMC simulation results for theLij are shown in Fig. 3 as
open symbols. The MS model calculations of the main and
cross-coefficients using Eqs. (12), (13) and (15) are shown
in Fig. 3(a) and (b) as continuous lines. We note that the
main coefficients are predicted with excellent accuracy. The
off-diagonal elements are also predicted reasonably well. We
also performed calculations of the MS model in which the
exchange coefficients–Dij are taken to have infintely large
values, corresponding to zero correlations between molecu-
lar jumps. With this assumption, the cross-coefficients van-
ish and the main coefficientsLii correspond to those of the
pure components. The comparison of the main coefficients
with KMC simulations are shown in Fig. 3(c). We note that
the match between simulations and the no correlations model
is quite poor, especially for component 3. The reason for this
poor match can be explained as follows. Correlation effects
tend to slow down the faster moving species. In the system
under study, the fastest moving species 3 will be slowed
down by both species 1 and 2. The slowest moving species
1 will be speeded up by species 2 and 3. Species 2 is accel-
erated by species 3, but decelerated by species 2. Clearly,
neglect of correlation effects leads to poor predictions of
Lii . The main coefficients cannot be identified with the pure
componentLs, as has been suggested by Sundaram and
Yang [6].

Next, we performed a set of three KMC simulations in
which the total occupancy was held constant(θ1+θ2+θ3 =
0.48) but the mixture compositions were varied. In Fig. 4,
we present the simulation results which were carried out for
an equimolar mixture of species 2 and 3 in which the mole
fraction of component 1 (slowest species),θ1/(θ1 + θ2 + θ3)

was varied from 0 to 1. The continuous lines in Fig. 4(a)
and (b) represent the MS model calculations, using Eqs.
(12), (13) and (15), are seen to be in good agreement with
the KMC simulation results. Ignoring the correlations (by
effectively takingij → ∞) leads to much poorer predictions
of the main coefficientsLii ; see Fig. 4(c). We also note from
Fig. 4(c) that the deviations are particularly large forL22
andL33; this is because the species 2 and 3 are slowed down
by species 1 due to correlations. Ignoring correlated jump
effects will lead to poor estimations ofL22 andL33.

In Fig. 5, we present the simulation results which were
carried out for an equimolar mixture of species 1 and 3
in which the mole fraction of component 2 (species with

Fig. 3. KMC simulations forLij in ternary mixture as a function of total oc-
cupancy(θ1+θ2+θ3). In these simulations we keepθ1 = θ2 = θ3 = 0.333
for each species. The pure component parameters are specified in Table 1.
The KMC simulation results for theLij are shown as open symbols. The
continuous lines in (a) and (b) are obtained using Eqs. (12), (13) and (15).
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Fig. 4. KMC simulations forLij in ternary mixture as a function of mole
fraction of component 1,θ1/(θ1 + θ2 + θ3) with the total occupancy kept
constant(θ1 + θ2 + θ3) = 0.48. The mixture is equimolar in species 2 and
3. The pure component parameters are specified in Table 1. The KMC
simulation results for theLij are shown as open symbols. The continuous
lines in (a) and (b) are obtained using Eqs. (12), (13) and (15). In (c)
the continuous lines are the calculations for the main coefficientsLii

obtained by making the assumption that the interchange coefficients–Dij

have infinite values (no correlations in molecular jumps).

Fig. 5. KMC simulations forLij in ternary mixture as a function of mole
fraction of component 2,θ2/(θ1 + θ2 + θ3) with the total occupancy kept
constant(θ1 + θ2 + θ3) = 0.48. The mixture is equimolar in species 1 and
3. The pure component parameters are specified in Table 1. The KMC
simulation results for theLij are shown as open symbols. The continuous
lines in (a) and (b) are obtained using Eqs. (12), (13) and (15). In (c)
the continuous lines are the calculations for the main coefficientsLii

obtained by making the assumption that the interchange coefficients–Dij

have infinite values (no correlations in molecular jumps).



R. Krishna, D. Paschek / Chemical Engineering Journal 87 (2002) 1–9 7

Fig. 6. Calculations of the elements of the Fick matrix [D] in ternary
mixture as a function of mole fraction of component 2,θ2/(θ1 + θ2 + θ3)

with the total occupancy kept constant(θ1 +θ2 +θ3) = 0.48. The mixture
is equimolar in species 1 and 3.

Fig. 7. KMC simulations forLij in ternary mixture as a function of mole
fraction of component 3,θ3/(θ1 + θ2 + θ3) with the total occupancy kept
constant(θ1 + θ2 + θ3) = 0.48. The mixture is equimolar in species 1 and
2. The pure component parameters are specified in Table 1. The KMC
simulation results for theLij are shown as open symbols. The continuous
lines in (a) and (b) are obtained using Eqs. (12), (13) and (15). In (c)
the continuous lines are the calculations for the main coefficientsLii

obtained by making the assumption that the interchange coefficients–Dij

have infinite values (no correlations in molecular jumps).
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intermediate mobility),θ2/(θ1+θ2+θ3) was varied from 0 to
1. The continuous lines in Fig. 5(a) and (b) represent the MS
model calculations, using Eqs. (12), (13) and (15), are seen
to be in good agreement with the KMC simulation results.
Ignoring the correlations (by effectively taking–Dij → ∞)
leads to much poorer predictions of the main coefficients
Lii ; see Fig. 5(c).

From Eq. (8), we can calculate the nine elements of the
Fick matrix [D]; these are shown in Fig. 6. We see that the
off-diagonal elements are significantly non-zero, pointing to
strong coupling effects.

Lastly, in Fig. 7, we present the simulation results which
were carried out for an equimolar mixture of species 1 and 2
in which the mole fraction of component 3 (fastest species),
θ3/(θ1 + θ2 + θ3) was varied from 0 to 1. The continuous
lines in Fig. 7(a) and (b) represent the MS model calcu-
lations, using Eqs. (12), (13) and (15), are seen to be in
good agreement with the KMC simulation results. Ignor-
ing the correlations (by effectively taking–Dij → ∞), leads
to much poorer predictions of the main coefficientsLii ;
see Fig. 7(c).

5. Conclusions

We have developed the MS formulation for mixture
diffusion in zeolites and compared this with the Onsager
formulation. Both approaches have their roots in the theory
of IT. An important advantage of the MS formalism is that
it allows the estimation of mixture diffusion on the basis
of the pure component diffusivities at zero loading. This
predictive capability has been tested by carrying out KMC
simulations for a ternary mixture in both silicalite. The
following major conclusions can be drawn from the results
presented in this paper:

• All the six Onsager coefficientsLij are influenced by
correlated jump effects. This result is in sharp contrast
with the MS diffusivities–Di which are free of correlation
effects [22,23].

• The set of KMC simulation results presented in Figs. 3–5
and 7 validate the predictive capability of the MS formu-
lation. The logarithmic interpolation formula (Eq. (12))
for the interchange coefficients–Dij has been verified.

• Ignoring correlation effects (by effectively taking–Dij →
∞) leads to much poorer predictions of the main coeffi-
cientsLii . Furthermore, ignoring correlations, we predict
vanishing cross-coefficientsLij ; this is in sharp contrast
with the KMC simulation results which show signifi-
cant, non-zero values for the cross-coefficients. Our work
shows that the procedure suggested by Sundaram and
Yang [6] for estimating the main coefficients on the basis
of pure component parameters, is not correct.

• From the knowledge of the Onsager matrix [L], the
elements of the Fick matrix [D] can be calculated using
Eq. (8).

We conclude that the Maxwell–Stefan theory for mul-
ticomponent diffusion in zeolites can be used to predict
mixture behaviour with good accuracy from pure compo-
nent transport data.

Acknowledgements

RK and DP acknowledge a grantProgrammasubsidie
from the Netherlands Organisation for Scientific Research
(NWO) for the development of novel concepts in reactive
separations technology.

References

[1] J. Kärger, D.M. Ruthven, Diffusion in Zeolites and other Microporous
Solids, Wiley, New York, 1992.

[2] D.M. Ruthven, M.F.M. Post, Diffusion in zeolite molecular sieves,
in: H. van Bekkum, E.M. Flanigan, J.C. Jansen (Eds.), Introduction
to Zeolite Science and Practice, 2nd Edition, Elsevier, Amsterdam,
2000.

[3] D.M. Ruthven, Principles of Adsorption and Adsorption Processes,
Wiley, New York, 1984.

[4] R. Krishna, J.A. Wesselingh, The Maxwell–Stefan approach to mass
transfer, Chem. Eng. Sci. 52 (1997) 861–911.

[5] J. Kärger, Some remarks on the straight and cross-coefficients in
irreversible thermodynamics of surface flow and on the relation
between diffusion and self diffusion, Surf. Sci. 36 (1973) 797–801.

[6] N. Sundaram, R.T. Yang, Binary diffusion of unequal sized molecules
in zeolites, Chem. Eng. Sci. 55 (2000) 1747–1754.

[7] F.J. Keil, R. Krishna, M.O. Coppens, Modeling of diffusion in
zeolites, Rev. Chem. Eng. 16 (2000) 71–197.

[8] F. Kapteijn, J.A. Moulijn, R. Krishna, The generalized Maxwell–
Stefan model for diffusion in zeolites: sorbate molecules with
different saturation loadings, Chem. Eng. Sci. 55 (2000) 2923–2930.

[9] R. Krishna, D. Paschek, Separation of hydrocarbon mixtures using
zeolite membranes: a modelling approach combining molecular
simulations with the Maxwell–Stefan theory, Sep. Purif. Technol. 21
(2000) 111–136.

[10] D.A. Reed, G. Ehrlich, Surface diffusivity and the time correlation
of concentration fluctuations, Surf. Sci. 105 (1981) 603–628.

[11] D.A. Reed, G. Ehrlich, Surface diffusion, atomic jump rates and
thermodynamics, Surf. Sci. 102 (1981) 588–609.

[12] L. Riekert, Rates of sorption and diffusion of hydrocarbons in
zeolites, AIChE J. 17 (1971) 446–454.

[13] V.P. Zhdanov, General equations for description of surface diffusion
in the framework of the lattice gas model, Surf. Sci. 194 (1985)
L13–L17.

[14] J. Kärger, Random-walk through 2-channel networks—a simple
means to correlate the coefficients of anisotropic diffusion in ZSM-5
type zeolites, J. Phys. Chem. 95 (1991) 5558–5560.

[15] B. Smit, L.D.J.C. Loyens, G.L.M.M. Verbist, Simulation of
adsorption and diffusion of hydrocarbons in zeolites, Faraday
Discuss. 106 (1997) 93–104.

[16] S. Pal, K.A. Fichthorn, Accelerated molecular dynamics of infrequent
events, Chem. Eng. J. 74 (1999) 77–83.

[17] C. Tunca, D.M. Ford, A transition-state theory approach to adsorbate
dynamics at arbitrary loadings, J. Chem. Phys. 111 (1999) 2751–
2760.

[18] T.J.H. Vlugt, C. Dellago, B. Smit, Diffusion of isobutane in silicalite
studied by transition path sampling, J. Chem. Phys. 113 (2000)
8791–8799.



R. Krishna, D. Paschek / Chemical Engineering Journal 87 (2002) 1–9 9

[19] R.L. June, A.T. Bell, D.N. Theodorou, Transition-state studies of
Xenon and SF6 diffusion in silicalite, J. Phys. Chem. 95 (1991)
8866–8878.

[20] D. Paschek, R. Krishna, Monte Carlo simulations of sorption and diff-
usion of isobutane in silicalite, Chem. Phys. Lett. 342 (2001) 148–
154.

[21] D. Paschek, R. Krishna, Diffusion of binary mixtures in zeolites:
kinetic Monte Carlo vs. molecular dynamics simulations, Langmuir
17 (2001) 247–254.

[22] D. Paschek, R. Krishna, Monte Carlo simulations of self-and
transport-diffusivities of 2-methylhexane in silicalite, Phys. Chem.
Chem. Phys. 2 (2000) 2389–2394.

[23] D. Paschek, R. Krishna, Inter-relation between self-and
jump-diffusivities in zeolites, Chem. Phys. Lett. 333 (2001) 278–284.

[24] S.M. Auerbach, Theory and simulation of jump dynamics, diffusion
and phase equilibrium in nanopores, Int. Rev. Phys. Chem. 19 (2000)
155–198.

[25] M.O. Coppens, A.T. Bell, A.K. Chakraborty, Dynamic Monte-Carlo
and mean-field study of the effect of strong adsorption sites
on self-diffusion in zeolites, Chem. Eng. Sci. 54 (1999) 3455–
3463.

[26] M.J. Sanborn, R.Q. Snurr, Diffusion of binary mixtures of CF4 and
n-alkanes in faujasite, Sep. Purif. Technol. 20 (2000) 1–13.


	Verification of the Maxwell-Stefan theory for diffusion of three-component mixtures in zeolites
	Introduction
	The Maxwell-Stefan theory of diffusion in zeolites
	KMC simulation methodology
	KMC simulation results compared to the MS model predictions
	Conclusions
	Acknowledgements
	References


